The feedback regulation of PI3K-miR-19a, and MAPK-miR-23b/27b in endothelial cells under shear stress.

نویسندگان

  • Jian He
  • Yulin Li
  • Xufang Yang
  • Xu He
  • Haiying Zhang
  • Jin He
  • Lihong Zhang
چکیده

Mechanical stimulation regulates endothelial cell (EC) functions through the modulation of signaling networks and gene expression. Our recent studies have identified that shear stress regulation of microRNAs (miRs)-19a, 23b and 27b, led to the modulation of EC proliferation. However, the underlying molecular mechanisms by which shear stress regulates these miRs have not been explored. Previous studies showed that shear stress activates multiple signaling pathways, including phosphatidylinositol 3 kinase (PI3K) and mitogen-activated protein kinase (MAPK). In this work we demonstrate that inhibition of the PI3K pathway attenuated the shear-induced miR-19a, and inhibition of the MAPK pathway attenuated miR-23b, 27b. The knockdown of miR-19a using antagomir-19a oligonucleotide (AM19a) decreased the shear-induced PI3K activation; whereas AM-23b, 27b reduced the shear-induced MAPK activation. Furthermore, the overexpression of miR-19a overrode the suppressive effects of PI3K inhibitors on shear-induced PI3K activation; the overexpression of miR-23b, 27b had similar effects on ERK activations, but had little effect on P38 and JNK activation. Our findings suggest a positive feedback loop whereby PI3K and MAPK mediate the shear regulation of miR expression, which in turn modulates the shear-regulated PI3K/MAPK signaling events in ECs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atheroprotective mechanisms of shear stress-regulated microRNAs.

MicroRNAs (miRs) are small non-coding RNAs that control gene expression by inhibiting translation or inducing degradation of targeted mRNA. miRs play a crucial role in vascular homeostasis but also during pathophysiological processes. Functionally active endothelial cells maintain homeostasis of the vasculature and protect against cardiovascular disease. The mechanical activation of endothelial...

متن کامل

Prooncogenic factors miR-23b and miR-27b are regulated by Her2/Neu, EGF, and TNF-α in breast cancer.

miRNAs (miR) are a critical class of small (21-25 nucleotides) noncoding endogenous RNAs implicated in gene expression regulation. We identified miR-23b and miR-27b as miRNAs that are highly upregulated in human breast cancer. We found that engineered knockdown of miR-23b and miR-27b substantially repressed breast cancer growth. Nischarin (NISCH) expression was augmented by knockdown of miR-23b...

متن کامل

SPOTLIGHT REVIEW MicroRNAs in flow-dependent vascular remodelling

Changes in haemodynamic forces in the vascular system result in an altered expression of miRs, which play important gene-regulatory roles by pairing to the mRNAs of protein-coding genes to fine-tune post-transcriptional repression. The development and structure of blood vessels are highly adapted to haemodynamic forces, such as shear stress, cyclic stretch, and circumferential wall stress, gene...

متن کامل

Dual regulation of receptor tyrosine kinase genes EGFR and c-Met by the tumor-suppressive microRNA-23b/27b cluster in bladder cancer

Recent clinical trials of chemotherapeutics for advanced bladder cancer (BC) have shown limited benefits. Therefore, new prognostic markers and more effective treatment strategies are required. One approach to achieve these goals is through the analysis of RNA networks. Our recent studies of microRNA (miRNA) expression signatures revealed that the microRNA-23b/27b (miR-23b/27b) cluster is frequ...

متن کامل

The Poly-cistronic miR-23-27-24 Complexes Target Endothelial Cell Junctions: Differential Functional and Molecular Effects of miR-23a and miR-23b

The regulation of function of endothelial cell-cell junctions is fundamental in sustaining vascular integrity. The polycistronic microRNA (miR) complexes containing miR-23a-27a-24-2, and 23b-27b-24-1 are predicted to target the majority of major endothelial junctional proteins. We focus on miR-23a and miR-23b, and investigate the functional effects of these miRs on junctions. While miR-23a and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 2012